| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333 |
- # ===================================================================
- #
- # Copyright (c) 2022, Legrandin <helderijs@gmail.com>
- # All rights reserved.
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions
- # are met:
- #
- # 1. Redistributions of source code must retain the above copyright
- # notice, this list of conditions and the following disclaimer.
- # 2. Redistributions in binary form must reproduce the above copyright
- # notice, this list of conditions and the following disclaimer in
- # the documentation and/or other materials provided with the
- # distribution.
- #
- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
- # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
- # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
- # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
- # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- # POSSIBILITY OF SUCH DAMAGE.
- # ===================================================================
- import unittest
- from binascii import unhexlify
- from Crypto.SelfTest.st_common import list_test_cases
- from Crypto.SelfTest.loader import load_test_vectors
- from Crypto.PublicKey import ECC
- from Crypto.PublicKey.ECC import EccPoint, _curves, EccKey
- from Crypto.Math.Numbers import Integer
- from Crypto.Hash import SHAKE128
- class TestEccPoint_Ed25519(unittest.TestCase):
- Gxy = {"x": 15112221349535400772501151409588531511454012693041857206046113283949847762202,
- "y": 46316835694926478169428394003475163141307993866256225615783033603165251855960}
- G2xy = {"x": 24727413235106541002554574571675588834622768167397638456726423682521233608206,
- "y": 15549675580280190176352668710449542251549572066445060580507079593062643049417}
- G3xy = {"x": 46896733464454938657123544595386787789046198280132665686241321779790909858396,
- "y": 8324843778533443976490377120369201138301417226297555316741202210403726505172}
- pointG = EccPoint(Gxy['x'], Gxy['y'], curve="Ed25519")
- pointG2 = EccPoint(G2xy['x'], G2xy['y'], curve="Ed25519")
- pointG3 = EccPoint(G3xy['x'], G3xy['y'], curve="Ed25519")
- def test_init_xy(self):
- EccPoint(self.Gxy['x'], self.Gxy['y'], curve="Ed25519")
- # Neutral point
- pai = EccPoint(0, 1, curve="Ed25519")
- self.assertEqual(pai.x, 0)
- self.assertEqual(pai.y, 1)
- self.assertEqual(pai.xy, (0, 1))
- # G
- bp = self.pointG.copy()
- self.assertEqual(bp.x, 15112221349535400772501151409588531511454012693041857206046113283949847762202)
- self.assertEqual(bp.y, 46316835694926478169428394003475163141307993866256225615783033603165251855960)
- self.assertEqual(bp.xy, (bp.x, bp.y))
- # 2G
- bp2 = self.pointG2.copy()
- self.assertEqual(bp2.x, 24727413235106541002554574571675588834622768167397638456726423682521233608206)
- self.assertEqual(bp2.y, 15549675580280190176352668710449542251549572066445060580507079593062643049417)
- self.assertEqual(bp2.xy, (bp2.x, bp2.y))
- # 5G
- EccPoint(x=33467004535436536005251147249499675200073690106659565782908757308821616914995,
- y=43097193783671926753355113395909008640284023746042808659097434958891230611693,
- curve="Ed25519")
- # Catch if point is not on the curve
- self.assertRaises(ValueError, EccPoint, 34, 35, curve="Ed25519")
- def test_set(self):
- pointW = EccPoint(0, 1, curve="Ed25519")
- pointW.set(self.pointG)
- self.assertEqual(pointW.x, self.pointG.x)
- self.assertEqual(pointW.y, self.pointG.y)
- def test_copy(self):
- pointW = self.pointG.copy()
- self.assertEqual(pointW.x, self.pointG.x)
- self.assertEqual(pointW.y, self.pointG.y)
- def test_equal(self):
- pointH = self.pointG.copy()
- pointI = self.pointG2.copy()
- self.assertEqual(self.pointG, pointH)
- self.assertNotEqual(self.pointG, pointI)
- def test_pai(self):
- pai = EccPoint(0, 1, curve="Ed25519")
- self.assertTrue(pai.is_point_at_infinity())
- self.assertEqual(pai, pai.point_at_infinity())
- def test_negate(self):
- negG = -self.pointG
- sum = self.pointG + negG
- self.assertTrue(sum.is_point_at_infinity())
- def test_addition(self):
- self.assertEqual(self.pointG + self.pointG2, self.pointG3)
- self.assertEqual(self.pointG2 + self.pointG, self.pointG3)
- self.assertEqual(self.pointG2 + self.pointG.point_at_infinity(), self.pointG2)
- self.assertEqual(self.pointG.point_at_infinity() + self.pointG2, self.pointG2)
- G5 = self.pointG2 + self.pointG3
- self.assertEqual(G5.x, 33467004535436536005251147249499675200073690106659565782908757308821616914995)
- self.assertEqual(G5.y, 43097193783671926753355113395909008640284023746042808659097434958891230611693)
- def test_inplace_addition(self):
- pointH = self.pointG.copy()
- pointH += self.pointG
- self.assertEqual(pointH, self.pointG2)
- pointH += self.pointG
- self.assertEqual(pointH, self.pointG3)
- pointH += self.pointG.point_at_infinity()
- self.assertEqual(pointH, self.pointG3)
- def test_doubling(self):
- pointH = self.pointG.copy()
- pointH.double()
- self.assertEqual(pointH.x, self.pointG2.x)
- self.assertEqual(pointH.y, self.pointG2.y)
- # 2*0
- pai = self.pointG.point_at_infinity()
- pointR = pai.copy()
- pointR.double()
- self.assertEqual(pointR, pai)
- def test_scalar_multiply(self):
- d = 0
- pointH = d * self.pointG
- self.assertEqual(pointH.x, 0)
- self.assertEqual(pointH.y, 1)
- d = 1
- pointH = d * self.pointG
- self.assertEqual(pointH.x, self.pointG.x)
- self.assertEqual(pointH.y, self.pointG.y)
- d = 2
- pointH = d * self.pointG
- self.assertEqual(pointH.x, self.pointG2.x)
- self.assertEqual(pointH.y, self.pointG2.y)
- d = 3
- pointH = d * self.pointG
- self.assertEqual(pointH.x, self.pointG3.x)
- self.assertEqual(pointH.y, self.pointG3.y)
- d = 4
- pointH = d * self.pointG
- self.assertEqual(pointH.x, 14582954232372986451776170844943001818709880559417862259286374126315108956272)
- self.assertEqual(pointH.y, 32483318716863467900234833297694612235682047836132991208333042722294373421359)
- d = 5
- pointH = d * self.pointG
- self.assertEqual(pointH.x, 33467004535436536005251147249499675200073690106659565782908757308821616914995)
- self.assertEqual(pointH.y, 43097193783671926753355113395909008640284023746042808659097434958891230611693)
- d = 10
- pointH = d * self.pointG
- self.assertEqual(pointH.x, 43500613248243327786121022071801015118933854441360174117148262713429272820047)
- self.assertEqual(pointH.y, 45005105423099817237495816771148012388779685712352441364231470781391834741548)
- d = 20
- pointH = d * self.pointG
- self.assertEqual(pointH.x, 46694936775300686710656303283485882876784402425210400817529601134760286812591)
- self.assertEqual(pointH.y, 8786390172762935853260670851718824721296437982862763585171334833968259029560)
- d = 255
- pointH = d * self.pointG
- self.assertEqual(pointH.x, 36843863416400016952258312492144504209624961884991522125275155377549541182230)
- self.assertEqual(pointH.y, 22327030283879720808995671630924669697661065034121040761798775626517750047180)
- d = 256
- pointH = d * self.pointG
- self.assertEqual(pointH.x, 42740085206947573681423002599456489563927820004573071834350074001818321593686)
- self.assertEqual(pointH.y, 6935684722522267618220753829624209639984359598320562595061366101608187623111)
- def test_sizes(self):
- self.assertEqual(self.pointG.size_in_bits(), 255)
- self.assertEqual(self.pointG.size_in_bytes(), 32)
- class TestEccKey_Ed25519(unittest.TestCase):
- def test_private_key(self):
- seed = unhexlify("9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60")
- Px = 38815646466658113194383306759739515082307681141926459231621296960732224964046
- Py = 11903303657706407974989296177215005343713679411332034699907763981919547054807
- key = EccKey(curve="Ed25519", seed=seed)
- self.assertEqual(key.seed, seed)
- self.assertEqual(key.d, 36144925721603087658594284515452164870581325872720374094707712194495455132720)
- self.assertTrue(key.has_private())
- self.assertEqual(key.pointQ.x, Px)
- self.assertEqual(key.pointQ.y, Py)
- point = EccPoint(Px, Py, "ed25519")
- key = EccKey(curve="Ed25519", seed=seed, point=point)
- self.assertEqual(key.d, 36144925721603087658594284515452164870581325872720374094707712194495455132720)
- self.assertTrue(key.has_private())
- self.assertEqual(key.pointQ, point)
- # Other names
- key = EccKey(curve="ed25519", seed=seed)
- # Must not accept d parameter
- self.assertRaises(ValueError, EccKey, curve="ed25519", d=1)
- def test_public_key(self):
- point = EccPoint(_curves['ed25519'].Gx, _curves['ed25519'].Gy, curve='ed25519')
- key = EccKey(curve="ed25519", point=point)
- self.assertFalse(key.has_private())
- self.assertEqual(key.pointQ, point)
- def test_public_key_derived(self):
- priv_key = EccKey(curve="ed25519", seed=b'H'*32)
- pub_key = priv_key.public_key()
- self.assertFalse(pub_key.has_private())
- self.assertEqual(priv_key.pointQ, pub_key.pointQ)
- def test_invalid_seed(self):
- self.assertRaises(ValueError, lambda: EccKey(curve="ed25519", seed=b'H' * 31))
- def test_equality(self):
- private_key = ECC.construct(seed=b'H'*32, curve="Ed25519")
- private_key2 = ECC.construct(seed=b'H'*32, curve="ed25519")
- private_key3 = ECC.construct(seed=b'C'*32, curve="Ed25519")
- public_key = private_key.public_key()
- public_key2 = private_key2.public_key()
- public_key3 = private_key3.public_key()
- self.assertEqual(private_key, private_key2)
- self.assertNotEqual(private_key, private_key3)
- self.assertEqual(public_key, public_key2)
- self.assertNotEqual(public_key, public_key3)
- self.assertNotEqual(public_key, private_key)
- def test_name_consistency(self):
- key = ECC.generate(curve='ed25519')
- self.assertIn("curve='Ed25519'", repr(key))
- self.assertEqual(key.curve, 'Ed25519')
- self.assertEqual(key.public_key().curve, 'Ed25519')
- class TestEccModule_Ed25519(unittest.TestCase):
- def test_generate(self):
- key = ECC.generate(curve="Ed25519")
- self.assertTrue(key.has_private())
- point = EccPoint(_curves['Ed25519'].Gx, _curves['Ed25519'].Gy, curve="Ed25519") * key.d
- self.assertEqual(key.pointQ, point)
- # Always random
- key2 = ECC.generate(curve="Ed25519")
- self.assertNotEqual(key, key2)
- # Other names
- ECC.generate(curve="Ed25519")
- # Random source
- key1 = ECC.generate(curve="Ed25519", randfunc=SHAKE128.new().read)
- key2 = ECC.generate(curve="Ed25519", randfunc=SHAKE128.new().read)
- self.assertEqual(key1, key2)
- def test_construct(self):
- seed = unhexlify("9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60")
- Px = 38815646466658113194383306759739515082307681141926459231621296960732224964046
- Py = 11903303657706407974989296177215005343713679411332034699907763981919547054807
- d = 36144925721603087658594284515452164870581325872720374094707712194495455132720
- point = EccPoint(Px, Py, curve="Ed25519")
- # Private key only
- key = ECC.construct(curve="Ed25519", seed=seed)
- self.assertEqual(key.pointQ, point)
- self.assertTrue(key.has_private())
- # Public key only
- key = ECC.construct(curve="Ed25519", point_x=Px, point_y=Py)
- self.assertEqual(key.pointQ, point)
- self.assertFalse(key.has_private())
- # Private and public key
- key = ECC.construct(curve="Ed25519", seed=seed, point_x=Px, point_y=Py)
- self.assertEqual(key.pointQ, point)
- self.assertTrue(key.has_private())
- # Other names
- key = ECC.construct(curve="ed25519", seed=seed)
- def test_negative_construct(self):
- coord = dict(point_x=10, point_y=4)
- coordG = dict(point_x=_curves['ed25519'].Gx, point_y=_curves['ed25519'].Gy)
- self.assertRaises(ValueError, ECC.construct, curve="Ed25519", **coord)
- self.assertRaises(ValueError, ECC.construct, curve="Ed25519", d=2, **coordG)
- self.assertRaises(ValueError, ECC.construct, curve="Ed25519", seed=b'H'*31)
- def get_tests(config={}):
- tests = []
- tests += list_test_cases(TestEccPoint_Ed25519)
- tests += list_test_cases(TestEccKey_Ed25519)
- tests += list_test_cases(TestEccModule_Ed25519)
- return tests
- if __name__ == '__main__':
- def suite():
- return unittest.TestSuite(get_tests())
- unittest.main(defaultTest='suite')
|